skip to main content


Search for: All records

Creators/Authors contains: "Williams, David R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report low-frequency radio observations of the 2021 outburst of the recurrent nova RS Ophiuchi. These observations include the lowest frequency observations of this system to date. Detailed light curves are obtained by MeerKAT at 0.82 and 1.28 GHz and LOFAR at 54 and 154 MHz. These low-frequency detections allow us to put stringent constraints on the brightness temperature that clearly favour a non-thermal emission mechanism. The radio emission is interpreted and modelled as synchrotron emission from the shock interaction between the nova ejecta and the circumbinary medium. The light curve shows a plateauing behaviour after the first peak, which can be explained by either a non-uniform density of the circumbinary medium or a second emission component. Allowing for a second component in the light-curve modelling captures the steep decay at late times. Furthermore, extrapolating this model to 15 yr after the outburst shows that the radio emission might not fully disappear between outbursts. Further modelling of the light curves indicates a red giant mass-loss rate of ∼5 × 10−8 M⊙ yr−1. The spectrum cannot be modelled in detail at this stage, as there are likely at least four emission components. Radio emission from stellar wind or synchrotron jets is ruled out as the possible origin of the radio emission. Finally, we suggest a strategy for future observations that would advance our understanding of the physical properties of RS Ophiuchi.

     
    more » « less
  2. Abstract

    The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Achieving sustainable development requires understanding how human behavior and the environment interact across spatial scales. In particular, knowing how to manage tradeoffs between the environment and the economy, or between one spatial scale and another, necessitates a modeling approach that allows these different components to interact. Existing integrated local and global analyses provide key insights, but often fail to capture ‘meso-scale’ phenomena that operate at scales between the local and the global, leading to erroneous predictions and a constrained scope of analysis. Meso-scale phenomena are difficult to model because of their complexity and computational challenges, where adding additional scales can increase model run-time exponentially. These additions, however, are necessary to make models that include sufficient detail for policy-makers to assess tradeoffs. Here, we synthesize research that explicitly includes meso-scale phenomena and assess where further efforts might be fruitful in improving our predictions and expanding the scope of questions that sustainability science can answer. We emphasize five categories of models relevant to sustainability science, including biophysical models, integrated assessment models, land-use change models, earth-economy models and spatial downscaling models. We outline the technical and methodological challenges present in these areas of research and discuss seven directions for future research that will improve coverage of meso-scale effects. Additionally, we provide a specific worked example that shows the challenges present, and possible solutions, for modeling meso-scale phenomena in integrated earth-economy models.

     
    more » « less
  4. Abstract

    The optical-ultraviolet transient AT 2021loi is located at the center of its host galaxy. Its spectral features identify it as a member of the Bowen fluorescence flare (BFF) class. The first member of this class was considered to be related to a tidal disruption event, but enhanced accretion onto an already active supermassive black hole was suggested as an alternative explanation. Having occurred in a previously known unobscured active galactic nucleus, AT 2021loi strengthens the latter interpretation. Its light curve is similar to those of previous BFFs, showing a rebrightening approximately 1 yr after the main peak (which was not explicitly identified but might be the case in all previous BFFs). An emission feature around 4680 Å, seen in the preflare spectrum, strengthens by a factor of ∼2 around the optical peak of the flare and is clearly seen as a double-peaked feature then, suggesting a blend of Niiiλ4640 with Heiiλ4686 as its origin. The appearance of Oiiiλ3133 and possible Niiiλλ4097, 4103 (blended with Hδ) during the flare further support a Bowen fluorescence classification. Here we present ZTF, ATLAS, Keck, Las Cumbres Observatory, NEOWISE-R, Swift AMI, and Very Large Array observations of AT 2021loi, making it one of the best-observed BFFs to date. It thus provides some clarity on the nature of BFFs but also further demonstrates the diversity of nuclear transients.

     
    more » « less
  5. Harmata, Michael (Ed.)
    Several years ago, a small family of diterpenoid natural products attracted our attention as novel targets for synthesis studies. Initially, four compounds were independently characterized by the research teams of Vidari1 and Steglich.2 Trichoaurantianolides AeD (1e4 of Fig. 9.1) were isolated from fruiting bodies of the mushrooms Tricholoma aurantium and Tricholoma fracticum in 1995. Subsequent efforts of Stermer and coworkers3 described the isolation of the closely related lepistal (5) and lepistol (6) of Fig. 9.2 as the corresponding C8 deoxygenated compounds of this family. In addition, the corresponding acetate of trichoaurantianolide B was discovered and named as 6-O-aetyl- trichoaurantin (7).2 Structure assignments were based upon extensive nuclear magnetic resonance (NMR) studies, and the features of relative stereo- chemistry were confirmed by an X-ray crystallographic analysis of trichoaurantianolide B (2).1b,2 These original investigators described the trichoaurantianolides as examples of a new class of diterpenes named as neodolastanes that signified a structural relationship to the tricyclic metabo- lites of marine origins known as dolastanes as represented by dolatriol (8)4 and the clavularane 95 of Fig. 9.2. Neodolastanes were defined as substances in which the bridgehead methyl substituent appears in a vicinal relationship with respect to the isopropyl group as exemplified in 4,5-deoxyneodolabelline (10) of Fig. 9.2, a related class of marine natural products.6 Steglich and coworkers2 also indicated an assignment of absolute stereo- chemistry for 2 that was based on Hamilton’s applications of linear-hypothesis testing of crystallographic data. This seldom-used technique was in agreement with the proposed absolute configuration of 2 that was advanced by Vidari, based on an assessment of the observed Cotton effects in CD spectroscopy. In 2003, Ohta and coworkers7 reported the discovery of related neodolastanes tricholomalides A, B, and C (structures 11, 12, and 13 of Fig. 9.3) from Tricholoma sp. They concluded that the tricholomalides possessed the opposite absolute configuration claimed for the trichoaurantianolides. This conclusion was based upon the independent analysis of their circular dichroism studies. By application of the octant rule for substituent effects on cisoid a,b- unsaturated ketones,8 Ohta and coworkers suggested a revision of the prior assignment of absolute configuration for the trichoaurantianolides. This asser- tion was advanced in spite of the consistently positive specific rotations recorded in different solvents for trichoaurantianolides A, B, and C1,2 versus the negative values of tricholomalides A (11) and B (12) (compare values in Figs. 9.1 and 9.3). Note that tricholomalide C (13) only differs from trichoaurantianolide B (2) as a C-8 diastereomeric alcohol, presented in the antipodal series. The specific rotation of 13 was of little value since it was recorded as [a]0 (c 0.01, MeOH).7 In 2006, Danishefsky described a pathway for the total synthesis of racemic tricholomalides A and B, and this effort led to a revision of the relative C-2 stereochemistry (Fig. 9.3; revised structures 14 and 15).9 It seemed rather unusual that genetically similar fungi would produce closely related metabolites as enantiomers, but certainly this is not unprecedented. As a starting point, this issue lacked clarity, and we concluded that our synthesis plans must unambig- uously address the issues of absolute configuration. The chemistry of dolabellane and dolastane diterpenes has been reviewed.10 The proposed pathway for biosynthesis of the trichoaurantianolides and related compounds (Fig. 9.4) follows an established sequence from geranyl- geranyl pyrophosphate (16), which undergoes p-cation cyclization to initially form the eleven-membered ring of 17. The event is followed by a second cyclization to form the dolabellane cation 18, and this [9.3.0]cyclotetradecane skeleton is central to several families of natural products. Direct capture or elimination from 18 leads to the 3,7-dolabelladiene 19, which presents the most common pattern of unsaturation within this class. Compounds within this group are traditionally numbered beginning with C-1 as the bridgehead carbon bearing the methyl group rather than following the connectivity presented in ger- anylgeranyl 16. The cation 18 also undergoes a 1,2-hydrogen migration and elimination, which leads to a transannular cyclization yielding the 5e7e6 tri- cyclic dolastane 20. The secodolastanes, represented by 21, are a small collec- tion of marine natural products, which arise from oxidative cleavage of C10eC14 in the parent tricycle 20. In analogous fashion, the neodolabellane structure 22 is produced from 18 by stereospecific backbone migrations that result in the vicinal placement of the bridgehead methyl and isopropyl substituents. Transannular cyclizations, stemming from 22, yield the class of neodolastane diterpenes (23). Trichoaurantianolides and the related lepistal A (5) are the result of oxidations and cleavage of the C-ring (C4eC5) of 23, which leads to the features of an unusual butyrolactone system. The guanacastepenes, such as 24,11 and heptemerones, such as 25,12 are primary examples of the 5e7e6 neodolastane family, and these metabolites have also been isolated from fungi sources. A characteristic structural feature is the vicinal, syn-relationship of the bridgehead methyl and isopropyl sub- stituents as compared with the 1,3-trans relationship found in dolastanes (Fig. 9.2, structures 8 and 9). Guanacastepenes have proven to be attractive targets for synthesis studies.11,13 However, these fungal metabolites exhibit the antipodal, absolute stereochemistry as compared with neodolastanes from marine origins, such as sphaerostanol (26) (Fig. 9.5).14 
    more » « less
  6. Branchi, Igor (Ed.)
    Excessive home cage aggression often results in severe injury and subsequent premature euthanasia of male laboratory mice. Aggression can be reduced by transferring used nesting material during cage cleaning, which is thought to contain aggression appeasing odors from the plantar sweat glands. However, neither the composition of plantar sweat nor the deposits on used nesting material have been evaluated. The aims of this study were to (1) identify and quantify volatile compounds deposited in the nest site and (2) determine if nest and sweat compounds correlate with social behavior. Home cage aggression and affiliative behavior were evaluated in 3 strains: SJL, C57BL/6N, and A/J. Individual social rank was assessed via the tube test, because ranking may influence compound levels. Sweat and urine from the dominant and subordinate mouse in each cage, plus cage level nest samples were analyzed for volatile compound content using gas chromatography-mass spectrometry. Behavior data and odors from the nest, sweat, and urine were statistically analyzed with separate principal component analyses (PCA). Significant components, from each sample analysis, and strain were run in mixed models to test if odors were associated with behavior. Aggressive and affiliative behaviors were primarily impacted by strain. However, compound PCs were also impacted by strain, showing that strain accounts for any relationship between odors and behavior. C57BL/6N cages displayed the most allo-grooming behavior and had high scores on sweat PC1. SJL cages displayed the most aggression, with high scores on urine PC2 and low scores on nest PC1. These data show that certain compounds in nesting material, urine, and sweat display strain specific patterns which match strain specific behavior patterns. These results provide preliminary information about the connection between home cage compounds and behavior. Salient compounds will be candidates for future controlled studies to determine their direct effect on mouse social behavior. 
    more » « less
  7. Abstract

    Single substances within complex vertebrate chemical signals could be physiologically or behaviourally active. However, the vast diversity in chemical structure, physical properties and molecular size of semiochemicals makes identifying pheromonally active compounds no easy task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genusSceloporus), synthesised one of them and investigated their biological activity in male intra-specific communication. In a series of behavioural trials, lizards performed more chemosensory behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the relative concentration of both compounds in the chemical signal. In addition, our results stress how minor compounds in complex mixtures can produce a meaningful behavioural response, how small differences in structural design are crucial for biological activity, and highlight the need for more studies to determine the complete functional landscape of biologically relevant compounds.

     
    more » « less